
Time, Clocks, and the

Ordering of Events in

a Distributed System (1978)

- Leslie Lamport

Presented by,

Bhargav Sundararajan

ECS 265: Distributed Database Systems

1

The Problem

ECS 265: Distributed Database Systems

NODE B
NODE A

Request A Request B

Which request was made first

2

The Problem

ECS 265: Distributed Database Systems

NODE B
NODE A

Request A Request B

Which request was made first

Solution: Physical clocks?

12:00 AM
12:01 AM

3

Overview

 Partial Ordering

 Total Ordering

 Anomalous Behavior

 Physical clocks

 Conclusion

ECS 265: Distributed Database Systems

4

Partial Ordering

 The system is composed of a collection of processes

 Each process consists of a sequence of events (instructions/subprogram)

Process P :
instr1

instr2

instr3 … (Total Order)

 ‘Sending’ and ‘Receiving’ messages among processes

 ‘Send’ : an event

 ‘Receive’ : an event

ECS 265: Distributed Database Systems

5

‘Happened Before’ relation

 a ‘happened before’ b is denoted as ‘a → b’

 If ‘a’ and ‘b’ are events in the same process, and ‘a’ comes before ‘b’,

then a → b.

 If ‘a’ sends a message and ‘b’ received it, then a → b

 If a → b and b → c then a → c

 Two distinct events a and b are said to be concurrent if a -/->b and b -/->a

ECS 265: Distributed Database Systems

6

Space-Time Diagram

ECS 265: Distributed Database Systems

 Vertical lines represent

process, Dots represent

events and wavy lines

represent messages.

 Horizontal direction

represents space.

 Vertical direction represents

time.

7

Logical Clocks

 A clock Ci for each process Pi to be a function which assigns a number
Ci(a) to any event a in that process.

 Logical Clock (Ci) has no relation with the Physical Clock.

Clock Condition:
For any event a, b:
If a→b, then C(a) < C(b)

 Clock Condition is satisfied if :
C1. If a and b are events in process Pi, and a comes before b, then Ci(a) <

Ci(b).
C2. If a is the sending of a message by process Pi and b is the receipt of that

message by process Pj, then
Ci(a) < Cj(b)

ECS 265: Distributed Database Systems

8

Space-Time Diagram

ECS 265: Distributed Database Systems

• Dashed lines denotes a clock tick

• The clock tick happens between two events

9

Implementation rules of Logical Clocks

 Following implementation rules are proposed to satisfy the clock condition:

IR1. Each process Pi increments Ci between any two successive events.

IR2. (a) If event a is the sending of a message m by process Pi, then the

message m contains a timestamp

Tm = Ci (a).

(b) Upon receiving a message m, process Pi sets Ci greater than or equal

to its present value and greater than Tm.

ECS 265: Distributed Database Systems

10

Total Order of Events

 A system of clocks can be used to order the set of all events in a system

 To break ties, we define a new relation ‘<’ known as the arbitrary total order

of events

 The total order relation => is defined as:

a => b, if and only if

(i) Ci(a) < Cj(b)

(ii) Ci(a) = Cj(b) and Pi< Pj

 This new relation, completes the ‘happened-before’ partial order into a

total ordering

ECS 265: Distributed Database Systems

11

Mutual Exclusion Problem

 Multiple processes share the same resource

 Conditions of the problem:

1. A process using the resource must release it before it can be given to

another process.

2. Requests for the resource must be granted in the order in which they were

made.

3. If every process using the resource eventually releases it, then every request

is eventually granted.

ECS 265: Distributed Database Systems

12

Solution to Mutual Exclusion Problem
 Every process maintains its own request queue.

 The Algorithm:

1. Resource request:

a. Process Pi sends the message Tm : Pi requests resource to every other process.

b. Pi also puts the request message on its request queue.

2. Resource request receipt:

a. Pj receives Pi’s request message.

b. Pj then puts the message on its request queue

c. Pj sends an acknowledgement to Pi (timestamped later)

3. Resource release:

a. Pi removes request message Tm : Pi requests resource from its queue

b. sends the release message Pi releases resource to every other process.

ECS 265: Distributed Database Systems

13

Solution to Mutual Exclusion Problem

4. Resource release receipt:

a. Pj receive’s Pi’s resource release message.

b. Pj removes the Tm : Pi requests resource from its request queue.

5. Resource allocation:

Pi is allocated the recourse when,

a. There is a Tm : Pi requests resource message in Pi ’s request queue which is

ordered before and other request in the queue.

b. Pi has received messages from every other process timestamped later than

Tm.

ECS 265: Distributed Database Systems

14

Anomalous Behavior

ECS 265: Distributed Database Systems

15

Anomalous Behavior

 Two possible ways to avoid such anomalous behavior:

1. The user can take the responsibility and assign a later timestamp to its own
event. For eg. b could give itself a later timestamp than a before requesting for
the resource.

2. Strong Clock Condition:

Let S be a set of all system events.

S’ : Set that contains S + all external events.

Then the strong clock condition is that,

For any events a; b in S’ : if a → b then C(a) < C(b)

3. One can construct physical clocks, running quite independently, and having
the Strong Clock Condition, therefore eliminating anomalous behavior.

ECS 265: Distributed Database Systems

16

Physical Clocks

 Ci(t) is the reading of the clock at physical time t.

 We assume that the clock is continuous and does not have discrete ticks. Hence,
dCi(t)/dt ≈ 1. Now, we can assume a following condition such as:

PC1: | dCi(t)/dt - 1 | < ĸ, where ĸ << 1

 It is not only enough for the clocks to run at the same rate, we need them to be
synchronized as well. There we can assume another condition such as:

PC2: For all i,j : |Ci(t) – Cj(t)| < ԑ, where ԑ ≈ 0

 As two clocks do not run at the same rate all the time, the difference tends to
get bigger and bigger over time.

 Hence, we need to devise an algorithm such that PC2 always holds.

ECS 265: Distributed Database Systems

17

Physical Clocks

 Let μ be a number such that if a and b are two processes and a → b. If a

occurs at time t, then as b occurs after a, it should occur at time t+μ.

 To avoid anomalous behavior, we need:

Ci(t+ μ) – Cj(t) > 0

 Combining this with PC1 and 2 allows us to relate the required
smallness of ĸ and ԑ to the value of μ.

 Using PC2, it is then easy to deduce that Ci(t+ μ) – Cj(t) > 0 if the following

inequality holds,

ԑ/(1- ĸ) ≤ μ

ECS 265: Distributed Database Systems

18

Algorithm

 Let us assume that there is a minimum delay in transmission of a message

and is denoted by μm, where μm ≥ 0

 The Implementation rules IR1 and 2 can be specialized for physical clocks

as follows,

IR1’ : For each i, Ci is differentiable at t and dCi(t)/dt >0

IR2’ : (a) Pi sends a message at t, timestamp Tm=Ci(t). (b)Upon receipt
of m, Pj sets Cj(t’) to max(Cj(t’), Tm+ μm)

ECS 265: Distributed Database Systems

19

Conclusion

 Introduced the concept of ‘happens before’ and how it defines an

invariant partial ordering of events in a distributed system.

 Described an algorithm for extending that partial ordering to a somewhat

arbitrary total ordering.

 Total ordering can sometimes result in an anomalous behavior.

 Prevented this behavior using synchronized physical clocks and devised an

algorithm to show the same.

ECS 265: Distributed Database Systems

20

